The Rise of Simulated Worlds for Training Autonomous Vehicles
Category Artificial Intelligence Thursday - May 2 2024, 14:51 UTC - 9 months ago The use of simulated worlds for training autonomous vehicles has become increasingly popular in recent years, with companies like Waymo boasting billions of miles driven in simulation. Advancements in computing power and graphics technology have made this possible, allowing for training in obscure and dangerous scenarios. Nvidia, a leader in producing high-quality GPUs, is at the forefront of this trend.
To anyone living in a city where autonomous vehicles operate, it would seem they need a lot of practice. Robotaxis travel millions of miles a year on public roads in an effort to gather data from sensors—including cameras, radar, and lidar—to train the neural networks that operate them.
In recent years, due to a striking improvement in the fidelity and realism of computer graphics technology, simulation is increasingly being used to accelerate the development of these algorithms. Waymo, for example, says its autonomous vehicles have already driven some 20 billion miles in simulation. In fact, all kinds of machines, from industrial robots to drones, are gathering a growing amount of their training data and practice hours inside virtual worlds.
According to Gautham Sholingar, a senior manager at Nvidia focused on autonomous vehicle simulation, one key benefit is accounting for obscure scenarios for which it would be nearly impossible to gather training data in the real world.
"Without simulation, there are some scenarios that are just hard to account for. There will always be edge cases which are difficult to collect data for, either because they are dangerous and involve pedestrians or things that are challenging to measure accurately like the velocity of faraway objects. That’s where simulation really shines," he told me in an interview for Singularity Hub.
While it isn’t ethical to have someone run unexpectedly into a street to train AI to handle such a situation, it’s significantly less problematic for an animated character inside a virtual world.
Industrial use of simulation has been around for decades, something Sholingar pointed out, but a convergence of improvements in computing power, the ability to model complex physics, and the development of the GPUs powering today’s graphics indicate we may be witnessing a turning point in the use of simulated worlds for AI training.
Graphics quality matters because of the way AI "sees" the world.
When a neural network processes image data, it’s converting each pixel’s color into a corresponding number. For black and white images, the number ranges from 0, which indicates a fully black pixel, up to 255, which is fully white, with numbers in between representing some variation of grey. For color images, the widely used RGB (red, green, blue) model can correspond to over 16 million possible colors. So as graphics rendering technology becomes ever more photorealistic, the distinction between pixels captured by real-world cameras and ones rendered in a game engine is falling away.
Simulation is also a powerful tool because it’s increasingly able to generate synthetic data for sensors beyond just cameras. While high-quality graphics are both appealing and familiar to human eyes, which is useful in training camera sensors, rendering engines are also able to generate radar and lidar data as well. Combining these synthetic datasets inside a simulation allows the algorithm to train using all the various types of sensors commonly used by AVs.
Due to their expertise in producing the GPUs needed to generate high-quality graphics, Nvidia has positioned themselves as a leader in the use of simulation for AI training, and it shows no signs of abating.
Share