The Power of Listening: The Astronomy of Sonification
Category Technology Monday - June 19 2023, 14:26 UTC - 1 year ago Sarah Kane, a legally blind researcher from the University of Pennsylvania, is using sonification technology to make astronomical data more accessible. Erin Kara and Allyson Bieryla from MIT and Harvard-Smithsonian Center for Astrophysics, respectively, are also using sonification to represent light around black holes and make solar eclipses accessible for the blind and visually impaired community. The Rubin Observatory in Chile is incorporating sonification into their astronomical data.
In the cavernous grand ballroom of the Seattle Convention Center, Sarah Kane stood in front of an oversize computer monitor, methodically reconstructing the life history of the Milky Way. Waving her shock of long white hair as she talked ("I’m easy to spot from a distance," she joked), she outlined the "Hunt for Galactic Fossils," an ambitious research project she’d recently led as an undergraduate at the University of Pennsylvania. By measuring the composition, temperature, and surface gravity of a huge number of stars, she’d been able to pick out 689 of them that don’t look like the others. Those celestial outliers apparently formed very early in the history of the universe, when conditions were much different from those today. Identifying the most ancient stars, Kane explained, will help us understand the evolution of our galaxy as a whole.
Kane’s presentation, which took place at the January 2023 meeting of the American Astronomical Society, unfolded smoothly, with just two small interruptions. Once she checked to make sure nobody was disturbing her guide dog. The other time, she asked one of the onlookers to help her highlight the correct chart on the computer screen, "since of course I can’t see the cursor." .
Astronomy should, in principle, be a welcoming field for a legally blind researcher like Kane. We are long past the era of observers huddling at the eyepiece of a giant telescope. Today, most astronomical studies begin as readings of light broken down by intensity and wavelength, digitized and sorted in whatever manner proves most useful. But astronomy’s accessibility potential remains largely theoretical; across the board, science is full of charts, graphs, databases, and images that are designed specifically to be seen. So Kane was thrilled three years ago when she encountered a technology known as sonification, designed to transform information into sound. Since then she’s been working with a project called Astronify, which presents astronomical information in audio form. "It is making data accessible that wouldn’t otherwise be," Kane says. "I can listen to a sonification of a light curve and understand what’s going on." .
Sonification and data accessibility were recurring themes at the Seattle astronomy meeting. MIT astrophysicist Erin Kara played sonic representations of light echoing off hot gas around a black hole. Allyson Bieryla from the Harvard-Smithsonian Center for Astrophysics presented sonifications designed to make solar eclipses accessible to the blind and visually impaired (BVI) community. Christine Limb from Lincoln University described a proposal to incorporate sonification into astronomical data collected by the $600 million Rubin Observatory in Chile, scheduled to open in 2024. The meeting was just a microcosm of a bigger trend in science accessibility. "Astronomy is a leading field in sonification, but there’s no reason that work couldn’t be generalized," Kane says. Sure enough, similar sonification experiments are underway in chemistry, geology, and climate science. High schools and universities are exploring the potential of auditory data displays for teaching math. Other type of sonification initiatives are underway in health care, with scientists seeking to turn readings of brain waves and other biological signals into music.
Share