Enhancing AI-Powered Edge Computing Devices' Security with Spintronic Compute-In-Memory Macros

Category Machine Learning

tldr #

A paper published in Nature Electronics introduced a new spintronic compute-in-memory macro that could enhance the security of AI edge devices. The nvCIM macro developed by the researchers enables good protection against malicious attacks, along with rapid response times, and high energy efficiency, and it can be integrated with existing semiconductor technology. The CMOS-integrated spintronic nvCIM macro could help to improve the security of AI-powered edge computing devices, protecting the sensitive data store on these devices.


content #

Edge computing applications, which entail the processing and storage of data at the source of its production (i.e., near where it is created), is now being applied to a growing number of technologies. The application of edge computing translates into devices that can collect, store and process data, such as smart watches, computers that analyze utility grid data, computerized security technologies, and other systems. As artificial intelligence (AI) algorithms are designed to analyze large amounts of data, they are well-suited for edge computing applications, as they can allow devices to analyze the data they collected and make accurate predictions based on this data. Ideally edge computing devices powered by AI should achieve high prediction accuracy, fast response times and a good power-efficiency, which enables a long battery life.

Spintronic Compute-In-Memory Macros employ Two-Dimensional Half-Complement Physical Encryption for Secure Access Control

To facilitate the widespread use of AI-powered edge computing devices and safeguard their users, computer scientists should also ensure that they are protected from cyber-attacks and from the theft of sensitive data. A paper published in Nature Electronics introduced a new spintronic compute-in-memory macro that could enhance the security of AI edge devices. In computer programming, macros are essentially rules, patterns or instructions that outline how input data should be mapped onto a given output. Their macro specifically applies to an on-chip non-volatile compute-in-memory (nvCIM) system, an architecture that combines a processor and a memory component into a single device.

The CMOS-Integrated Macro uses 22nm Spin-Transfer Torque Magnetic Random-Access Memory Technology

"We report a spintronic nvCIM macro for efficient dot-product edge computing with secure access control for activation, key and data protection against power-on and power-off probing," Yen-Cheng Chiu, Win-San Khwa and their colleagues wrote in their paper. "The approach relies on spintronic-based physically unclonable functions and two-dimensional half-complement physical encryption, as well as a snoop-proof self-decryption burst-read scheme in conjunction with a sparsity-and-rectified-linear-unit-aware early-termination compute-in-memory engine." .

The Macro Achieve High Reliability with Intra-Hamming Distance of 0 & Inter-Hamming Distance of 0.4999

The nvCIM macro developed by Chiu Khwa and their colleagues can be integrated with existing semiconductor technology, which facilitates its real-world application. The researchers tested its performance in a series of preliminary tests and found that it enabled good protection against malicious attacks, along with rapid response times, and high energy efficiency.

"The 6.6 megabit complementary metal–oxide–semiconductor (CMOS)-integrated macro uses 22 nm spin-transfer torque magnetic random-access memory technology," Chiu, Khwa and their colleagues explained in their paper. "The macro achieves high randomness (inter-Hamming distance, 0.4999) and high reliability for physically unclonable functionality (intra-Hamming distance, 0), as well as a high energy efficiency for dot-product computation (between 30.1 and 68.0 tera-operations per second per watt)." .

The Macro has a High Energy Efficiency of 30.1 to 68.0 Tera-Operations Per Second Per Watt

In the future, the CMOS-integrated spintronic nvCIM macro introduced by this team of researchers could help to improve the security of AI-powered edge computing devices, protecting the sensitive data store on these devices.


hashtags #
worddensity #

Share