Destroying PFAS: New Technologies and Techniques to Combat ‘Forever Chemicals’
Category Technology Saturday - October 28 2023, 15:37 UTC - 1 year ago PFAS, or 'forever chemicals', are a group of human-made chemically compounds used in many consumer items. They have been linked to increased risks for various cancers and decreased infant birthweight. Researchers have developed new technologies to better understand, monitor, and combat PFAS.
The PFAS sample slides around the inside of the plastic jar when I swirl it, dark and murky, like thin maple syrup. For many, these toxic so-called "forever chemicals" amount to something of a specter, having crept into our lives—and bodies—quietly for more than half a century. In the environment, PFAS are clear and odorless. We may hear about them in the headlines, consider them when we turn on the tap for a glass of water or a shower, but we don’t see them. We can’t touch them. Except that’s exactly what I find myself doing.
PFAS stands for "per- and polyfluoroalkyl substances," a family of upwards of 15,000 or more human-made and incredibly durable chemical compounds that have been used in countless industrial and consumer applications for decades. Firefighting foams, waterproof hiking boots, raincoats, nonstick frying pans, dental floss, lipstick, and even the ink used to label packaging—all can contain PFAS. The compounds are ubiquitous in drinking water and soil, even migrating to Arctic sea ice. PFAS are called forever chemicals because once present in the environment, they do not degrade or break down. They accumulate, are transferred throughout the watershed, and ultimately persist.
The quest to reduce the amount of PFAS in the environment is what led me to an industrial park in a southern suburb of Grand Rapids, Michigan. The jar of PFAS concentrate in my hand is part of a demonstration arranged by my hosts, Revive Environmental, during a tour of the company’s PFAS destruction site, one of the first in the country to operate commercially and at scale. A few yards in front of me sits the company’s PFAS "Annihilator" in a white shipping container.
The Annihilator represents just one of several technologies now vying to break down and destroy PFAS. These span the gamut from established processes like electrochemical oxidation and supercritical water oxidation to emerging techniques relying on ultraviolet light, plasma, ultrasound, or catalyst-driven thermal processes. Some are deployed in field tests. Other companies are actively running pilot programs, many with various divisions of the US Department of Defense and other government agencies. And many other technologies are still undergoing laboratory research.There’s good reason for this. Not only are PFAS everywhere around us; they’re also in us. Humans can’t break down PFAS, and our bodies struggle to clear them from our systems. Studies suggest they’re in my blood and yours—the majority of Americans’, in fact—and they have been linked to increased risks of kidney and testicular cancer, decreased infant birthweights, and high blood pressure. And that’s only what we know about now: researchers continue to grapple with the full impacts of PFAS on human and environmental health.
Revive’s Annihilator and other nascent destruction technologies show the first signs of promise that these "forever chemicals" can be removed from the environment permanently, limiting further human exposure and risk. But destroying PFAS is only one step in the full remediation process. Across the globe, researchers are developing new technologies and techniques to better understand, monitor, and combat PFAS, making sure these dangerous, pervasive toxins have no place in our food, water, and environments.
Share